SRI G.V.G. VISALAKSHI COLLEGE FOR WOMEN

Autonomous & Affiliated to Bharathiar University [,) #** s
Accredited at A* Grade by NAAC il
Udumalpet — 642128, Tamil Nadu. m—

www.gvgvc.ac.in ; principal@gvgvc.ac.in,
Ph.04252-223019;Fax:04252-2233111

Department of Information Technology
Academic Year 2022-2023

Organizes Bridge Course - ""Basics of Computer"'

Table of Contents

Sno | Topic Page Number
1 Introduction 1
2 Algorithms 2
2.1 Simple Algorithms 2
2.2 Type of Algorithms 3
2.3 Properties of Algorithm 6
3 Flowcharts 6
3.1 Flowchart Symbols 7
3.2 General Rules for Flowcharting 8
3.3 Some examples of Flowcharts 8
3.4 Advantages Of Using Flowcharts 10
4 C- Language 11
4.1 A Brief History of C 11
4.2 Cls a Middle-Level Language 12
4.3 Cls a Structured Language 12

Computer Programming

1 Introduction

Inteligence is one of the key characteristics which differentiate a human being from other living
creatures on the earth. Basic Inteligence covers day to day problem solving and making strategies to
handle different situations which keep arsing in day to day life. One person goes Bank to withdraw
money. After knowing the balance in his azcount, he/she decides to with draw the entire amount from
his account but he/she has 1o leave minimum balance in his account. Here deciding about how much
amount he/she may with draw from the account is one of the examples of the basic intelligence. During
the process of solving any problem, one tries to find the necessary steps to be taken In 3 sequence. in
this Unit you will develop your understanding about problem solving and approaches.

Problem Solving

Can you think of a day in your life which goes without problem solving? Answer to this question s of
course, No. In our life we are bound to solve problems. In our day to day activity such as purchasing
something from a general store and making payments, depositing fee in school, or withdrawing money
from bank account. Al these activities involve some kind of problem solving. It can be said that
whatever activity a human being or machine do for achieving a specified objective comes under problem
solving. To make it clearer, let us see some other examples,

Example1: If you are watching a news chaanel on your TV and you want to change it to a sports channel,
you need to do something i.e. move to that 2 channel by pressing that channel number on your remote,
This is a kind of problem solving.

Example 2: One Monday morning, a student s ready to go to school but yet he/she has not picked up
those books and copies which are required as per timetable. So here picking up books and copies as per
timetable is a kind of problem solving.

Example 3: If someone asks to you, what is time now? So seeing time in your watch and tefling him is
also a kind of problem solving.

Example 4: Some students in a class plan to go on picnic and decide to share the expenses among them,
5o calculating total expenses and the amount an individual have to give for picnic is also a kind of
problem solving.

Now, broadly we can say that problem s a kind of barrier to achieve something and problem solving is 3
process to get that barrier d by performing some of activities. Here it is necessary to

mention that all the problems in the world can not be solved. There are some problems which have no
solution and these problems are called Open Problems. If you can solve a given problem then you can
also write an algorithm for it. In next section we will learn what s an algorithm.

2 Algorithms

Algorithm can be defined as: “A of to be
given input.”

Webopedia defines an algorithm as: “A formula or set of steps for solving a particular problem, To be an
algorithm, a set of rules must be unambiguous and have a clear stopping point”. There may be more
than one way to solve a problem, so there may be more than one algorithm for a problem.

for getting desired output from a

Now, if we take definition of algorithm as: "A sequence of activities to be processed for getting desired
output from a given Input.” Then we can say that:

1. Getting specified output is essential after algorithm is executed.

2. One will get output only if algorithm stops after finite time.

3. Activities in an algorithm to be clearly defined in other words for it to be unambiguous.

Before writing an algorithm for a problem, one should find out what is/are the inputs to the algorithm
and what is/are expected output after running the algorithm. Now let us take some exercises to develop
an algorithm for some simple problems: While writing algorithms we will use following symbol for
different operations:

‘+' for Addition

‘' for Subtraction

‘*' for Multiplication

‘/' for Division and

** for assignment. For example A X*3 means A will have a value of X*3,

2.1 Simple Algorithms
Problem 1: Find the area of a Circle of radius r.
Inputs to the algorithm:

Radius r of the Circle.

Expected output:
Area of the Circle

Algorithm:

Step1: Read\input the Radius r of the Circle
Step2: Area PI*r*r // calculation of area
Step3: Print Area

Problem2: Write an algorithm to read two numbers and find their sum.
Inputs to the algorithm:

First num1.

Second num2.

Expected output:
Sum of the two numbers.

Algorithm:

Step1:Start

Step2: Read\input the first num1.
Step3: Read\input the second num2.
Step4:Sum numil+num2
Step5: Print Sum

Step6: End

// calculation of sum

Problem 3: Convert temperature Fahrenheit to Celsius
Inputs to the algorithm:

Temperature in Fahrenheit

Expected output:

Temperature in Celsius

Algorithm:

Step1:Start

Step 2: Read Temperature in Fahrenheit F
Step 3: C=5/9*(F32)

Step 4: Print Temperature in Celsius: C
Step 5: End

2.2 Type of Algorithms

The ithm and cl

1. Sequence

2. Branching (Selection)

:ht:::::e ::r: structures are sufficient for all purposes. The sequence is exemplified by sequence

of statements place one after the other — the one above or before another gets executed first. In
of Is usually inthe lar process box.

to the three types of control structures. They are:

The branch refers to a binary decision based on some condition. If the condition is true, one of the two
branches is explored; if the condition Is false, the other alternative is taken. This is usually represented
by the ‘if-then’ construct in pseudo-codes and In this is by the
diamond-shaped decision box. This structure is also known as the selection structure.

Problem1: write algorithm to find the greater number between two numbers
Stepl:Start

Step2: Read/input Aand B

Step3: If A greater than B then C=A

Step4: if B greater than A then C=B

Step5: Print C

Step6: End

Problem 2: A algorithm to find the largest value of any three numbers.
Stepl: Start

Step2: Read/input A,B and C

Step3: If (A>=B) and (A>=C) then Max=A

Stepd: If (B>=A) and (B>=C) then Max=B

Step5:If (C>=A) and (C>=B) then Max=C

Step6: Print Max

Step7: End
The loop allows a ora of to be based on sor;\er
‘while’ [st o
ition. It is represented by the ‘while’ and ‘for’ in mo:
< w"d"":‘ andp ded loops [C ded loops refer to those whose number of
ops P

| i loops refer to
iterations depends on the that the is pS =
those whose number of is known before-hand.) In the fi , @ back arrow hints t
presence of a loop. A trip around the loop is known as iteration. You must ensure that the condition for

the termination of the looping must be satisfied after some finite number of iterations, otherwise it
ends up as an infinite loop, 3 common mistake made by inexperienced programmers. The loop is also
known as the repetition structure.

Examples:
An to cal even Oand 99
1. Start
2. 1<0
3. Write lin standard output
4. 1€ 192
S. 1f (1 <=98) then go to line 3
6. End

Problem2: Design an algorithm which gets a natural value, n,as its Input and calculates odd numbers
equal or less than n. Then write them In the standard output:

Start

Read n

1€<1

Write |

1€1+2

f(l<=n)thengotolined

End

NowawNp

1000 and 2000 and then

Design an which even
prints them in the standard output. It should also print total sum:
Start
1€1000and S €0
Write |
S€S+!
1€1+2
If (1 <= 2000) then go to line 3 else go to line 7
Write S
End

NN E N

Problem4: Design an algorithm with a natural number, n, as its input which calculates the following
formula and writes the result in the standard output:
S=%+%+..+1/n

1. Start
2.Readn
31€2andS €0
4.5=5+1/)
S5.1€1+42

6.1f (1 <= n) then go to line 4 else write Sin standard output
7.End

Combining the use of these control structures, for example, a loop within a loop (nested loops), a branch
within another branch (nested if), a branch within a loop, a loop within a branch, and so forth, is not
uncommon. Complex algorithms may have more complicated logic structure and deep level of nesting,
In which case it is best to demarcate parts of the algorithm as separate smaller modules. Beginners must
train themselves to be proficient in using and control

through the trouble of tracing through the algorithm before they convert it into code.

Y, and go

2.3 Propertles of Algorithm
Donald Ervin Knuth has given a list of five properties for an algorithm, these properties are:
1) Fii An al must always after a finite number of steps. it means after every

step one reach closer to solution of the problem and after a finite number of steps algorithm reaches to
an end point.

2) Definiteness: Each step of an algorithm must be precisely defined. It is done by well thought actions
to be performed at each step of the algorithm. Also the actions are defined unambiguously for each
activity in the algorithm,

3) Input: Any operation you perform need some beginning value/ with different
ivities in the So the value/ are given to the algorithm before it begins.
4) Output: One always expects put/i t (d value/) in terms of output from an

algorithm. The result may be obtained at different stages of the algorithm. If some result is from the
I stage of the then it is known as intermediate result and result obtained at the

end of algorithm is known as end result. The output is expected value/quantities always have a specified
relation to the inputs,

5) Effectiveness: Algorithms to be developed/written using basic operations, Actually operations should
be basic, so that even they can in principle be done exactly and in a finite amount of time by a person,
by using paper and pencil only.

3 Flowcharts

The flowchart i a diagram which visually presents the flow of data through processing systems. This
means by seeing a flow chart one can know the operations performed and the sequence of these

perations In a system. Al are nothing but sequence of steps for solving problems. So a flow

chart can be used for rep g an al - A flowchart, will describe the operations (and in what
e a flow chart as a blueprint of a design you

sequence) are required to solve a given problem. You can se:
have made for solving a problem,

For example suppose you are going for a picnic with your friends then you plan for the activities you will
do there. If you have a plan of activities then you know clearly when you will do what activity. Similarly
when you have a problem to solve using computer or in other word you need to write a computer
program for a problem then it will be good to draw a flowchart prior to writing a computer program.
Flowchart is drawn according to defined rules.

3.1 Flowchart Symbols

There are 6 basic symbols commonly used in flowcharting of assembly language Programs: Terminal,
Process, input/output, Decision, Connector and Predefined Process. This is not a complete list of all the
possible flowcharting symbols, it Is the ones used most often in the structure of Assembly language
programming.

Indicates any type of intemal
operation inside the Processor
or Memory

Used for any lnml_ / omp:n
(U'0) operation. Indicates
the computer is to obtain data
or output results
Used to ask a question that can
be answered in a binary
format (Yes/No, True/False)
Allows the flowchart to be
drawn without intersecting
liges or without a reverse
ow.

input/output

Decision

Connector

Used to invoke a subroutine or
an Interrupt program.
feeeee———"] L

Tndicates the starting or ending
of the program, process, of

Predefined Process

Terminal

@ | imerupt progam |
—"""""""] " . v
| Shows direction of flow.

3.2 General Rules for Flowcharting

1. All boxes of the flowchart are connected with Arrows. (Not lines)
2. Flowchart symbols have an entry point on the top of the symbol with no other entry points. The exit
point for all flowchart symbols is on the bottom except for the Decision symbol.
3. The Decision symbol has two exit points; these can be on the sides or the bottom and one side.
4. Generally a flowchart will flow from top to bottom. However, an upward flow can be shown as long as
it does not exceed 3 symbols.
5. Connectors are used to connect breaks in the flowchart. Examples are:
* From one page to another page.
* From the bottom of the page to the top of the same page.
* An upward flow of more then 3 symbols
6. and p 8! have their own and independent flowcharts.
7. All flow charts start with a Terminal or Predefined Process (for interrupt programs or subroutines)

symbol.
8. All flowcharts end with a terminal or a contentious loop.

Flowcharting uses symbols that have been in use for a number of years to represent the type of
operations and/or processes being performed. The standardized format provides a common method for
people to visualize problems together in the same manner. The use of standardized symbols makes the
flow charts easier to interpret, however, standardizing symbols is not as important as the sequence of
activities that make up the process.

3.3 Some examples of Flowcharts
les on flowcharting. These

Now, we will discuss some les will help in proper understanding
of flowcharting technique. This will help you In program development process in next unit of this block.
Problem1: Find the area of a circle of radius r.

AREA=314%c*r

Problem 2:

sius.

Convert temperature Fahrenheit to Cel

END

hart for an algorithm which gets two numbers and prints sum of their value.

blem3: F g

Read A,B

—

P Algorithm {or find the greater number between two numbers.
problem &

Problem 5: Draw a flowchart to find the largest of three numbers A,8, and C.

xo @

(2 M——)

Vi i I Gaan ¥ B §

-

34 Ad Of Using Fl harts
Flow chart is used for representing algorithm in pictorial form.
lution/system is having many adh These are as follows:

This pictorial representation of a

N

nicatlon: A Flowchart can be used as a better way of communication o
mul J
Com! e solution, to all concerned particularly to the client of sysy,

f the
1) logie
and steps involve in th em, ofy
:ste:\ ive analysis: A flowchart of a problem can be used for effective analysis of the prob
em,

3) of Prog Y Program fi ts are a vital part of , 00d
documentation. Program document Is used for various purposes like k nowing the c°mp°nen°'°(nm
program, complexity of the program etc. 1 .
4) Efficient Program Once a program Is developed and — o

time to time maintenance. With help of flowchart maintenance become easier,

5) Coding of the Program: Any design of solution of a problem is finally ¢ r—
program. Writing code referring the flowchart of the solution become easy,

ationa| ¢ nesgy

into COMpuge,

4 C- Language

4.1 A Brief History of C
C was invented and first implemented by Dennis Ritchie on a DEC PDP-11 that used the
system. C is the result of a development process that started with an older language cal
was developed by Martin Richards, and it influenced a language called B, which was invented by Ke:
Th B led to the devell of Cin the 1970s. For many years, the de facto standard for ¢ :
the version supplied with the Unix operating system. It was first described in The ¢ ngm’:m
Language by Brian Kernighan and Dennis Ritchie (Englewood Cliffs, N.J.: Prentice-Hall, 1978) |ni'1:
summer of 1983 a committee was established to create an ANSI (American National Standards lr;sm
standard that would define the C language. The standardization process took six years (much lo ;
than anyone reasonably expected). -
The ANSI C standard was finally adopted in Decemb
early 1990, The dard was also ad p

Unix OPerating
led BCPL, gy,

1989, with the first copies becoming available in
by 1SO (Inter | Standards O
:), and the
resulting standard was typically referred to as ANSI/ISO Standard C. In 1995, Amendment 1 to the
standard was adopted, which, among other things,
standard f :
submo'ct: C.;:elong with Amendment 1, became a base document for Standard C#+, defining the ¢
iy 1. version of C defined by the 1989 standard is commonly referred to as C89.
- € 19905, the development of the C++ standard c d most ' attention.
owever, work i
i, ::nz codntflnued Quietly along, with a new standard for ¢ being developed. The end result
P u:rc lOr C, usually referred to as c99, |n general, C99 retained nearly all of the
6o of ey m:me; Slllllli Cl The c99 standardization committee focused on two main areas: the
ic
ki I,le‘rlarles and the development of some special-use, but highly innovative,
fromenfm arrays and the restrict pointer qualifier. These innovations have
Oof computer language development.

added several new library functions. The 1989

such as varia
ONce again put ¢ o the foref

4.2 Cls a Middle-Level Language

Cis often called a middle-level computer language. This does not mean that C s less powerful, harder to
use, or less developed than a high-level language such as BASIC or Pascal, nor does it imply that C has
the cumbersome nature of assembly language (and its associated troubles). Rather, C is thought of as a
middie-level language because it combines the best elements of high-level languages with the control
and flexibility of assembly language As a middle-level language, C allows the manipulation of bits, bytes,
and addresses— the basic elements with which the computer functions. Despite this fact, C code is also
very portable. Portability means that it is €asy to adapt software written for one type of computer or

operating system to another type. For example, if you can easily convert a program written for DOS so
that it runs under Windows 2000, that program is portable,

High level

Ada

Modula-2

Pascal

coeoL

FORTRAN

BASIC

Java

NP, N

Middle level

[

c

FORTH
Macro-assembler

[o

4.3 Cls a Structured Language

The term block-structured applied to a computer language. Although the term block-structured language

does not strictly apply to C, C is commonly referred to simply as a structured language. It has many
il to other I such as ALGOL, Pascal, and Modula-2. A structured language

offers a variety of For example, languages typically support several

loop constructs, such as while, do-while, and for.

In a structured language, the use of goto is either prohibited or discouraged and is not the common

form of program control (as is the case in standard BASIC and traditional FORTRAN, for example). A

structured language allows you to place statements anywhere on a line and does not require a strict

field concept (a5 some older FORTRANS do).

:2936ugnsl bawnuinon bas bawsng Yo 29lqmexs smoz a6 el

bawnuntenon
WAATAOY £
JiA8 £
1080) £
) »
evel 2
S-sluboM k]
bawnini2
163269 £
sbA S
++) £

Attendance:

